博客
关于我
Objective-C实现闭式函数计算特定位置的斐波那契数fibonacciNthClosedForm算法(附完整源码)
阅读量:795 次
发布时间:2023-02-22

本文共 1117 字,大约阅读时间需要 3 分钟。

Objective-C 实现斐波那契数的闭式函数

斐波那契数列是一个经典的数列,其通项公式已被数学家们研究并得到了闭式解释,称为 Binet 公式。这个公式能够快速准确地计算任意位置的斐波那契数,避免了递归或迭代的复杂性。

斐波那契数的闭式公式(Binet 公式)为:

F(n) = [\phi^n - (1 - \phi)^n] / \sqrt{5}

其中,\(\phi = \frac{1 + \sqrt{5}}{2}\) 是黄金比例,约等于 1.618。

以下是 Objective-C 中实现上述闭式公式的代码示例:

#import <Foundation/Foundation.h>

@interface FibonacciClosed : NSObject

+(CGFloat)fibonacciNthClosedForm:(NSInteger)n;
@end

@implementation FibonacciClosed

+(CGFloat)fibonacciNthClosedForm:(NSInteger)n {

const CGFloat phi = (1.0 + sqrt(5.0)) / 2.0;
const CGFloat oneMinusPhi = 1.0 - phi;
const CGFloat sqrt5 = sqrt(5.0);

CGFloat phiPower = pow(phi, n);  CGFloat oneMinusPhiPower = pow(oneMinusPhi, n);  CGFloat result = (phiPower - oneMinusPhiPower) / sqrt5;  return result;

}

该代码定义了一个 Objective-C 类 `FibonacciClosed`,其中包含了计算特定位置斐波那契数的闭式方法。该方法通过计算黄金比例 \(\phi\) 的 n 次幂与其补数的 n 次幂之差,再除以根号 5,来得到所需的斐波那契数。

需要注意的是,斐波那契数的闭式公式虽然精确,但由于浮点运算的精度限制,非常大的 n 值可能会导致计算结果有轻微偏差。因此,在实际应用中需要根据具体需求选择合适的计算方式。

转载地址:http://onsfk.baihongyu.com/

你可能感兴趣的文章
NGINX配置TCP连接双向SSL
查看>>
Nginx配置——不记录指定文件类型日志
查看>>
nginx配置一、二级域名、多域名对应(api接口、前端网站、后台管理网站)
查看>>
nginx配置中的服务器名称
查看>>
Nginx配置代理解决本地html进行ajax请求接口跨域问题
查看>>
nginx配置全解
查看>>
Nginx配置参数中文说明
查看>>
Nginx配置后台网关映射路径
查看>>
nginx配置域名和ip同时访问、开放多端口
查看>>
Nginx配置多个不同端口服务共用80端口
查看>>
Nginx配置好ssl,但$_SERVER[‘HTTPS‘]取不到值
查看>>
Nginx配置如何一键生成
查看>>
Nginx配置实例-动静分离实例:搭建静态资源服务器
查看>>
Nginx配置实例-反向代理实例:根据访问的路径跳转到不同端口的服务中
查看>>
Nginx配置实例-反向代理实现浏览器请求Nginx跳转到服务器某页面
查看>>
Nginx配置实例-负载均衡实例:平均访问多台服务器
查看>>
Nginx配置文件nginx.conf中文详解(总结)
查看>>
Nginx配置自带的stub状态实现活动监控指标
查看>>
Nginx配置详解
查看>>
nginx配置详解、端口重定向和504
查看>>